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Decimative subspace-based parameter estimation techniques
applied to magnetic resonance spectroscopy signals

G. Morren1, P. Lemmerling1 and S. Van Huffel1
1SISTA/COSIC Division, Electrical Engineering Department (ESAT), K.U.Leuven, Belgium

Abstract— In this paper, the problem of estimating the
frequencies, dampings, amplitudes and phases of closely
spaced complex damped exponentials in the presence of
noise is considered. In several papers, decimation is pro-
posed as a way to increase the performance of subspace-
based parameter estimation methods, in the case of over-
sampling [1][2][3]. In this paper, a novel extension of the
HTLS-method [4] that operates directly on the decimated
data matrix is presented, and it is compared to other dec-
imation methods. Experiments on simulated nuclear mag-
netic resonance (NMR) spectroscopy signals show the in-
fluence of decimation on the accuracy and computational
complexity of the estimators.

Keywords— decimation, subspace-based parameter esti-
mation, NMR, quantitation

I. Introduction

In various applications of digital signal processing, such
as NMR spectroscopy and speech processing, complex
damped exponentials are used as a model function. Let
x(t) be a sum of K complex damped exponentials, con-
taminated by additive white noise n(t):

x(t) =
K∑
k=1

ckz
t
k + n(t), t = 0, 1, . . . , N−1 (1)

with complex amplitudes ck, k = 1, . . . ,K
ck = ake

j(φ0+φk) (2)
and signal poles zk, k = 1, . . . ,K

zk = e(j2πfk−dk)/fsample (3)
where ak represents the amplitude, (φ0 + φk) the phase,
fk the frequency and dk the damping of the kth compo-
nent, and fsample is the sampling frequency. φ0 is the
zero order phase, whereas φk represents extra degrees of
freedom that may be required under certain experimen-
tal conditions (usually all φk are zero). The problem is
to estimate these parameters given a set of N noisy data
points x(t), t = 0, 1, . . . , N−1.

It is known that subspace-based parameter estimation
techniques perform poorly when applied to a signal con-
sisting of a sum of closely spaced complex damped ex-
ponentials [5]. Therefore, in recent publications different
decimative approaches were proposed in order to increase
the performance of these subspace-based methods. The
idea is to artificially increase the frequency separation by
decimating (downsampling) the signal, however making
sure that no aliasing is introduced.

In this paper a novel extension of the HTLS-method [4]
that operates directly on the decimated data-matrix is
presented, and it is compared to existing decimative
subspace-based algorithms [1][2][3]. Furthermore, the in-
fluence of decimation on the accuracy and computational

complexity of these subspace-based estimators is ana-
lyzed. Extensive Monte-Carlo simulations on simulated
NMR signals show the benefits of decimation in the field
of NMR spectroscopy.

II. Decimative methods

Three subspace-based methods are briefly described:
• ETLSD: the ESPRIT-Total Least Squares algorithm [6]
applied to decimated data, as presented in [1] [2];
• HTLSD: the novel extension of the Hankel-Total Least
Squares algorithm [4] for decimated data;
• DESE: another decimative subspace-based parameter
estimation algorithm, recently proposed as Decimative
Spectral Estimation [3].

In what follows, scalars are represented by lower-case
letters, vectors by bold lower case letters and matrices by
bold uppercase letters. Furthermore, a Matlab like nota-
tion is used: a(i) stands for the ith element of vector a.

A. ETLSD
The approach described in [1] uses several decimated se-

quences to calculate the sample covariance matrix, which
is used to estimate the frequencies and dampings by
means of the ESPRIT-TLS method [6].

The original data sequence x=[x(0), x(1) . . . , x(N−1)],
can be divided into D different decimated sequences
xi ∈ R(N/D)×1, i=0, 1, . . . , D−1:

xi = [x(i), x(D + i), . . . , x((N/D − 1)D + i)] (4)
with D the decimation factor, which should be chosen
such that |fk| < (fsample)/(2D), j = 1, 2, . . . ,K in order
to avoid aliasing. Using the model (1), we can write:

xi(t) =
K∑
k=1

ckz
(Dt+i)
k +n(Dt+ i), t=0, 1, . . . , N/D−1

=
K∑
k=1

(cki)(z′k)t + n(Dt+ i) (5)

where cki = ckz
i
k, k = 1, 2, . . . ,K, i = 0, 1, . . . , D−1 and

z′k = zDk , k = 1, 2, . . . ,K. From each of these decimated
sequences a sample covariance matrix with m lags is
formed, which can be written as the product of Hankel-
matrices:

Ri = XiX∗i (6)
with

Xi =


xi(0) xi(1) . . . xi(N/D−m)
xi(1) xi(2) . . . xi(N/D−m+1)

...
...

. . .
...

xi(m−1) xi(m) . . . xi(N/D−1)

 ,
(7)
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where X∗i represents the conjugate transpose of Xi. The
averaged sample covariance matrix

R =
1
D

D−1∑
i=0

Ri (8)

is then used to estimate the decimated signal poles
z′k, k = 1, 2, . . . ,K by means of the ESPRIT-TLS algo-
rithm [6]. From these estimates ẑ′k, the estimates of the
original poles ẑk, and hence estimates of the frequencies
and dampings, are easily obtained. The phases and the
amplitudes, contained in ck, are then calculated as the
least squares solution to (1), with zk replaced by the es-
timates ẑk.

Since the main computational cost of ETLSD is the
eigenvalue decomposition of the m×m sample covariance
matrix R, it is clear that the computational complexity
mainly depends on the parameter m.

The method presented in [2] is identical using the same
covariance matrix, calculated in a slightly different way.

B. HTLSD

A similar subspace-based method that operates directly
on the data matrix is HTLS [4]. The difference between
HTLS and ESPRIT-TLS is that HTLS makes use of the
singular value decomposition (SVD) of the data matrix
instead of the eigendecomposition of the sample covari-
ance matrix.

For noiseless data, using (5), Xi can be written in terms
of Vandermonde matrices:

Xi =


1 1 . . . 1
z′1 z′2 . . . z′K
...

...
. . .

...
z′1
m−1

z′2
m−1

. . . z′K
m−1



c1i 0 . . . 0
0 c2i . . . 0
...

...
. . .

...
0 0 . . . cKi




1 z′1 . . . z′1
N/D−m

1 z′2 . . . z′2
N/D−m

...
...

. . .
...

1 z′K . . . z′K
N/D−m


≡ SCiTT (9)

From this Vandermonde decomposition, the decimated
signal poles z′k, k = 1, . . . ,K and complex amplitudes
cki, k = 1, . . . ,K can immediately be derived. How-
ever, no algorithm exists to compute the Vandermonde
decomposition directly. Therefore, HTLS makes use of
the shift-invariant structure of S and the singular value
decomposition of Xi to determine the decimated pole es-
timates ẑ′k, k = 1, 2, . . . ,K [4].

From (9) it is clear that the Vandermonde decompo-
sition of every Xi, i = 1, 2, . . . , D has the same (shift-
invariant) matrix S, i.e. all decimated sequences have the
same poles. Therefore, HTLS can also be applied to the

block-Hankel matrix Xstack, constructed as follows:

Xstack =
[

X1 X2 . . . XD

]
(10)

= S
[

C1T C2T . . . CDT
]
. (11)

Since in this case all samples are used for the SVD, the
estimated poles are more accurate than those estimated
from only one decimated sequence.

After the estimation of the signal poles, the phases and
the amplitudes are calculated as the least squares solution
to (1), with zk replaced by the estimates ẑk.

Since the main computational cost of HTLSD is the
SVD of the m× (N +D−mD) data matrix Xstack, it
is clear that the computational complexity, for given N ,
mainly depends on the parameters m and D.

The fact that HTLS applied to Xstack is the decimative
version of HTLS corresponding to ETLSD, can also be
deduced from the observation that the averaged sample
covariance matrix R (8) can be written as follows:

R=
1
D

[
X1 X2 . . . XD

]


X∗1
X∗2
...

X∗D

=
1
D

XstackX∗stack.

(12)
C. DESE

This algorithm was presented very recently [3]. Like
HTLS, DESE also makes use of the SVD of a Hankel ma-
trix and the full set of data.

A Hankel matrix X is constructed from the original
data sequence (as in (7) with D= 1). From this Hankel
matrix, XD and XD are computed by deleting respec-
tively the top and bottom D rows. DESE uses the shift-
invariance between XD and XD in order to estimate the
decimated poles.

Without decimation (D = 1), this method is identical
to a method called MATPEN, proposed in [7].

The main computational cost of DESE consists of the
SVD of the (m−D)×(N−m+1) data matrix XD and the
eigendecomposition of an (m−D)×(m−D) matrix. Since
D is usually significantly smaller than m, DESE usually
requires more operations than ETLSD or HTLSD.

III. Experimental results

Extensive simulations have been performed on typical
simulated NMR signals. Below, one representative exam-
ple simulating a typical 5 peak 31P NMR signal of per-
fused rat liver, is given. N data points (here, N = 128),
uniformly sampled at 10 kHz, are generated by a fifth or-
der (K=5) model function (1), of which the parameters
are displayed in Table 1. For several combinations of noise
level σν , matrix dimension m and decimation factor D,
the three described methods are compared by means of
Monte-Carlo simulations consisting of 2000 noise realiza-
tions each. The data points are perturbed by Gaussian
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TABLE I

Exact parameter values of the simulated NMR signal

peak fk(Hz) dk(rad/s) ak(a.u.)a ψk(◦)b

1 -1379 208 6.1 15
2 -685 256 9.9 15
3 -271 197 6.0 15
4 353 117 2.8 15
5 478 808 17.0 15

aa.u. means arbitrary units.
bψk = φ0 ∗ 180/π expresses the phase in degrees
(in this example φk=0, k=1, . . . , K).

noise whose real and imaginary components have stan-
dard deviation σν . (Relative) root mean squared errors
of the estimates of all signal parameters are calculated
as well as the percentage of failures per noise level. A
failure occurs when not all 5 peaks are resolved within
specified intervals lying symmetrically around the exact
frequencies, or when the estimated damping is negative.
The halfwidths of the intervals are based on Cramer-Rao
lower bound considerations, and are respectively 82, 82,
82, 43 and 82 Hz.
The root mean squared error (RMSE) of the frequency

estimates (excluding failures) of peak 4 is plotted as a
function of σν in Fig. 1, for ETLSD and HTLSD and
for different values of m and D. From the curves with
m= 32 it can be seen that decimation increases the sta-
tistical performance significantly, both for ETLSD and
HTLSD. There is no significant difference in accuracy be-
tween ETLSD and HTLSD. The advantage of HTLSD
over ETLSD is that squaring the data, and the associ-
ated numerical problems with ill-conditioned matrices, is
avoided. Keeping D constant, the accuracy of the fre-
quency estimates increases with increasing m, and hence
increasing computational burden (compare the curves
with m = 32, D = 1 to those with m = 64, D = 1).
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Fig. 1. Plot of RMSE of the frequency estimates of peak 4 versus noise
standard deviation σν , for ETLSD (4) and HTLSD (x), for different
decimation factors D and matrix dimensions m (D = 1,m= 32: dash-
dotted line; D=1,m=64: solid line; D=2,m=32: dashed line).

Comparing the curves with m= 64, D= 1 to those with
m=32, D=2, we see that with a lower m a similar statis-
tical accuracy can be obtained by proportionally increas-
ing D. Simulations with varying m and fixed D show
that, for ETLSD and HTLSD, the most accurate esti-
mates are obtained for m= N

2D , i.e. for square data ma-
trices Xi. In this case, the statistical accuracy of the esti-
mates obtained with or without decimation is comparable.
However, decimation allows to obtain these estimates at
a much lower computational cost. Indeed, for m = N

2D ,
the computational complexity is mainly determined by
the eigendecomposition of the ( N2D )×( N2D ) matrix R for
ETLSD, and by the SVD of the ( N2D )×(N2 +D) matrix
Xstack for HTLSD. So, for increasing D, the computa-
tional cost to obtain the best possible estimates decreases.
Therefore, choosing maximal D (in order to avoid aliasing
D<(fsample)/(2|fk|), k = 1, . . . ,K) gives optimal perfor-
mance, for ETLSD and HTLSD, both in statistical and
computational sense.

With m= N
2D , the parameter estimates obtained with

DESE are much less accurate, as can be seen in Fig. 2.
In order to obtain a comparable accuracy with DESE,
the matrices XD and XD should be as square as possible,
i.e. m= N−D

2 . However, since usually D<<N , increas-
ing D hardly reduces the computational cost because this
cost mainly consists of the calculation of the SVD of the
(N−D2 )×(N−D2 ) matrix XD and the eigendecomposition
of an (m−D)×(m−D) matrix. Using m = N

2D on the
other hand (as for ETLSD and HTLSD), lowers the com-
putational burden but then the accuracy of the parameter
estimates decreases drastically, as shown in Fig. 2.

Some simple tests using the counter of floating points
operations (flops) in Matlab illustrate the dependence of
the computational complexity of each of the algorithms
on D and m , as shown in Table II. Although more effi-
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Fig. 2. Plot of RMSE of the frequency estimates of peak 4 versus
noise standard deviation σν , for HTLSD (x) and DESE (o), for different
decimation factors D and matrix dimensions m (D = 1,m= 32: dash-
dotted line; D = 1,m = 64: solid line; D = 2,m = 32: dashed line;
D=2,m=64: dotted line (for DESE only)).
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TABLE II

Computational complexity of the algorithms, for

different D and m values, expressed as flops/106
.

D m ETLSD HTLSD DESE
1 32 3.9 6.8 13.9
2 32 3.6 3.9 13.9
1 64 24.2 12.2 91.1
2 64 n.a.a n.a.a 91.0
an.a. means not available: for ETLSD and
HTLSD, m must be smaller than N/D.

cient implementations are possible for each algorithm (ex-
ploiting the Hankel matrix structure, using partial SVD
algorithms), the effect of varying D and/or m on the com-
putational burden will qualitatively be the same as indi-
cated in Table II.

On the other hand, DESE has less failures than HTLSD
(and ETLSD, which have a comparable percentage of fail-
ures), as shown in Fig. 3. For DESE, the number of
failures increases with decreasing D; for ETLSD/HTLSD
the number of failures decreases slightly with decreasing D
(the differences are small). However, DESE without dec-
imation is still more robust than ETLSD/HTLSD with
decimation (for constant m).

IV. Conclusions

In this paper, we presented a decimative extension to
the HTLS method [4], and compared it with two other,
recently proposed, decimative subspace-based parameter
estimation methods: ETLSD [1] [2] and DESE [3]. The
principles of the different methods are presented within
the same framework, and the relations between the meth-
ods are pointed out. The algorithms were tested by means
of various Monte-Carlo simulations. It is demonstrated
that the dimensions of the data matrix (the number of
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Fig. 3. Plot of percentage of failures versus noise standard deviation
σν , for HTLSD (x) and DESE (o), for different decimation factors D and
matrix dimensions m (D= 1,m= 32: dash-dotted line; D= 2,m= 32:
dashed line; D = 1,m= 64: solid line; D = 2,m= 64: dotted line (for
DESE only)).

lags in the covariance matrix) is by far the most important
factor determining the statistical accuracy of the param-
eter estimates, leading to the conclusion that square data
matrices give the best parameter estimates. From this
observation, it can be derived that decimation as applied
in ETLSD and HTLSD, does not lead to better estimates
than the best possible ones without decimation. However,
decimation allows to obtain estimates with the same accu-
racy at much lower computational cost. The decimative
approach DESE, presented in [3], however, does not have
this computational advantage, and its statistical accuracy
did not prove to be higher than that of the other two ap-
proaches. For very high noise levels the number of fail-
ures for DESE seems to be lower than that of ETLSD and
HTLSD. It is however not clear how any of these methods
can be used in practice (e.g. NMR quantitation) when the
percentage of failures of the method is larger than 10%,
meaning that one out of ten quantitations is useless.
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[1] P. Stoica and A.E. Nordsjö, “Subspace-based frequency estima-
tion in the presence of moving-average noise using decimation,”
Signal Processing, vol. 63, pp. 211–220, 1997.

[2] B. Halder and T. Kailath, “Efficient estimation of closely spaced
sinusoidal frequencies using subspace-based methods,” IEEE
Signal Process. Letters, vol. 4, no. 2, pp. 49–51, February 1997.

[3] S.-E. Fotinea, Y.Dologlou, and G. Carayannis, “Decimation and
svd to estimate exponentially damped sinusoids in the presence
of noise,” in Proc. IEEE ICASSP-2001, Salt Lake City, May
2001.

[4] S. Van Huffel, H. Chen, C. Decanniere, and P. Van Hecke, “Al-
gorithm for time-domain NMR data fitting based on total least
squares,” J.Magn.Res., vol. 110, pp. 228–237, Feb 1994.
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